Classifying Time Series Using Local Descriptors with Hybrid Sampling
نویسندگان
چکیده
منابع مشابه
Classifying Human Voices by Using Hybrid SFX Time-Series Preprocessing and Ensemble Feature Selection
Voice biometrics is one kind of physiological characteristics whose voice is different for each individual person. Due to this uniqueness, voice classification has found useful applications in classifying speakers' gender, mother tongue or ethnicity (accent), emotion states, identity verification, verbal command control, and so forth. In this paper, we adopt a new preprocessing method named Sta...
متن کاملAn Effective Method for Imbalanced Time Series Classification: Hybrid Sampling
Most traditional supervised classification learning algorithms are ineffective for highly imbalanced time series classification, which has received considerably less attention than imbalanced data problems in data mining and machine learning research. Bagging is one of the most effective ensemble learning methods, yet it has drawbacks on highly imbalanced data. Sampling methods are considered t...
متن کاملAutomatically classifying paintings with perceptual inspired descriptors
We propose a framework for the automatic recognition of artistic genre in digital representations of paintings. As we aim to contribute to a better understanding of art by humans, we extensively mimic low-level and medium-level human perception by relying on perceptually inspired features. While Gabor Filter Energy has been applied in art description, Dominant Color Volume (DCV) and frameworks ...
متن کاملDynamic time-series forecasting using local approximation
Pattern recognition techniques for time-series forecasting are beginning to be realised as an important tool for predicting chaotic behaviour of dynamic systems. In this paper we develop the concept of a Pattern Modelling and Recognition System which is used for predicting future behaviour of time-series using local approximation. In this paper we compare this forecasting tool with neural netwo...
متن کاملTime Series Prediction using Recurrent SOM with Local Linear Models
A newly proposed Recurrent Self-Organizing Map (RSOM) is studied in time series prediction. In this approach RSOM is used to cluster the data to local data sets and local linear models corresponding each of the map units are then estimated based on the local data sets. A traditional way of clustering the data is to use a windowing technique to split it to input vectors of certain length. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2016
ISSN: 1041-4347
DOI: 10.1109/tkde.2015.2492558